Dakka: A dependently typed Actor
framework for Haskell

Philipp Dargel

2018-12-04

Dakka: A dependently typed Actor framework for Haskell

2018-12-04

Contents

1 Introduction

11 Motivation e e
1.2 Goals . . . o o e e
1.3 Result e e e

2 Fundamentals

21 ActorModel
22 Akka . .. e e
23 CloudHaskell
2.4 DependentTyping i i it i e e e
241 singletons
2.5 mtlMonad classes and Monad-transformers
2.6 Haskell Languagefeatures
2.6.1 Heterogeneouscollections
2.6.2 HeterogeneousMaps
2.6.3 Typeable

3 Implementation

30 0VerVIEW . . o e e e e e e e e e
3.2 ACTOr .. e e e e e e e e e
3.3 ActorContext e
331 send ... e e
332 create e e e
3.3.3 ActorRef
3.3.4 FlexibilityandEffects
34 Testing e e e
3.5 executingin adistributed environment o000 L
3.51 CreatingActors
4 Results
4.1 DependenttypesinHaskell
42 CloudHaskell e
43 FutureWork e e e
431 Generalcleanup e

4.3.2 Automatically flattening the Actor System type hierarchy

4.3.3 PolymorphicActors
4.3.4 SupportmoreAkkafeatures.

o o~ b

O O N N o o1 »n

Philipp Dargel

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

4.3.5 Bettertypeerrormessages e 33
43.6 MakeActorcreationeasier. 33
Bibliography 34
5 Appendix 36

Philipp Dargel 3

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

1 Introduction

The goal of this thesis is to explore how Haskell’s type system can be leveraged to create an Actor
frameworks, similar to Akka, that allows the user to better reason about the runtime behavior of the
system. Haskell provides many tools in its type system that together with Haskell’s purely functional
nature enables us to formulate more strict constraints on Actor systems. To formulate these con-
straints | will leverage some of Haskell’s dependent typing features. Another focus of the thesis is
the testability of code written using the created framework.

| will show that leveraging Haskell’s advantages can be used to create an Akka like Actor framework
that enables the user to express many constraints inside the type system itself that have to be done
through documentation in Akka. The implementation of the Actor framework and important design
decisions will be discussed in detail. | will also show that excessive usage of the type system has some
downsides that mostly relate to the maturity of Haskell’s dependent typing features.

1.1 Motivation

Parallel programming plays an increasing role in the current tech environment and will become even
more so. Single processor cores are not getting significantly faster, instead more cores are added to
a single processor. As a result efficiently utilizing contemporary processors requires workloads to be
processed in parallel. When dealing with parallelism the type system normally is not helpful in pre-
venting bugs.

Distributed systems are also becoming more and more important with the advent of the Internet of
Things (loT). For loT devices, it becomes even more important that software is bug free. Depending on
the kind of deployment it may be hard to debug a device. Rolling out patches is also a hard task that
would be nice to avoid if possible.

Actor systems provide a way of modeling programs that is particularly suited for parallel and dis-
tributed execution. There are many systems that use Actor systems for exactly that purpose. The
Erlanglanguage and the Akka framework for the Java Virtual Machine (JVM) are two of the most promi-
nent examples.

Types may be used to check the behavior of a single actor internally, but are not often used to check
properties about the Actor system as a whole. The lack of these global checks may make it possible
for example to send messages to Actors that could never exist in the Actor system, or send messages
to Actors that those can not handle.

Haskell provides a strong type system that can be used to express these kinds of invariants. Unfortu-
nately the only major Actor framework for Haskell, cloud-haskell does not utilize it to do so.

Philipp Dargel 4

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

1.2 Goals

| want to create an Actor framework for Haskell that leverages the type system to constrain Actor be-
haviors to minimize unexpected side effects. The main issue the type system can help in is ensuring
that only messages can be sent that can be handled by the receiving Actor. It should ideally be possi-
ble for the user to add further constraints on messages and Actors or other parts of the system as they
choose.

Runtime components of this Actor framework should be serializable. Serializability is desirable since
it aids debugging, auditing, distribution and resilience. Debugging and auditing are aided by Serial-
izability since we could store relevant parts of the system to further review them independent of the
runtime environment. If we can store the state of the system we can also recover the whole system or
parts of it by simply restoring a previous system state. These states could then also be sent to different
processes or machines to migrate Actors from one node to another.

1.3 Result

| explored many aspects of Haskell’s type system and dependent typing features and how to apply
them to the domain of Actor frameworks. As a result | created an API that fulfills many of the target
features. Actorsimplemented in the created APl can be executed in a test environment and to a certain
degree in a distributed environment. Since the main focus was the APl and how to constrain Actors
written with it, the runtime aspect is not yet fully implemented.

2 Fundamentals

2.1 Actor Model

The Actor Model is a way of modeling concurrent computation where the primitive of computation is
called an Actor. Afinite set of Actors that can communicate with each otheris an Actor System. Actors
can receive messages and are characterized by the way they respond to these Messages. In Response
to a message an Actor may:

1. Send a finite number of messages to other Actors inside the same Actor System.
2. Add a finite number of new Actors to the Actor System.
3. Designate the behavior to be used for the next message it receives.

The Actor Model keeps these definitions very abstract. The high degree of abstraction makes Actor
identification inside an Actor system and message ordering details of implementation.

Philipp Dargel 5

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

2.2 Akka

Akkais animplementation of the Actor Model written in Scala for the Java Virtual Machine[Akka-docul].
Akka is not a straight implementation of the Actor Model. In some cases Akka deviates from the classic
Actor Model, described above. All these change are made with care and make Akka more suited for
real world use cases.

In Akka Actors are represented as classes that extend a common base class. When an Actor is created
a new instance of the Actor’s class is created. The Actor class’ constructor may require additional
arguments. Constructor arguments have to be supplied when an Actor is created. Actor classes have
to provide an initial receive property which represents the Actors initial behavior. The type of the
receive property is PartialFunction[Any, Unit] which means it’s a possibly partial function
that takes arguments of any type and returns a unit. An Actor class may have fields which represent
internal state. In addition to fields they inherit the become method which provides a way to switch the
behavior of the current Actor. Inside of its behavior the Actor has access to a reference to itself as well
as to the sender of the currently handled message. Inside an Actor system messages of any type can
be sent to any reference. There is a special message called PoisonPi 11 which will terminate an Actor
when received. When an Actor terminates it’s designated supervisor is notified. Normally an Actors
supervisor is the Actor that created it.[1]

In addition to these foundational Actors Akka provides more features for Actors like control over Actors
mailboxes[2], message routing[3], clustering of Actor Systems[4] and more.

The way Akka is implemented distinguishes it from the traditional Actor Model in some cases and
extends it:

+ Actors have two kinds of state: The internal state of the Actor class instance and the current
Receive behavior.

« Astrict order on messages is enforced. For every pair of Actors in the Actorsystem it is ensured
that messages from one of those Actors to the other are handled in the same order they were
sent. A notable exception to this is the Ki1ll message which terminates an Actor as soon as
possible.

« Actors are named when they are created.

+ EachActor has accessto the current Actor system via the context property. This gives any Actor
access to every other Actor in the current Actor system. Actors can be enumerated or searched
for by path.

« When an Actor terminates a message is sent to it’s supervisor(s).

+ Since Scala is not a pure language Actors can perform arbitrary operations in response to their
behavior. As a result it is not possible to constrain the behavior of a piece of Scala code through
its type. There is always a way to launch the missiles.

« Akka expects messages to be immutable.

Philipp Dargel 6

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

Thereis also an alternative package to the described Actor base package which adds type information
to Actors[5]. The main differences between those two packages are twofold. Actor references are
parametrized by the type of message that the defining Actor may handle. Also Actors have to define
what kind of message they may receive.

2.3 Cloud Haskell

Cloud Haskell is described by its authors as a platform for Erlang-style concurrent and distributed
programming in Haskell.[6][7]

Since Erlang-style concurrency isimplemented using the Actor model, Cloud Haskell already provides
a fully fledged Actor framework for Haskell. In addition there are rich facilities to create distributed
systems in Haskell.

Unfortunately Cloud Haskell has to be somewhat opinionated since some features it provides would
not be possible otherwise. The biggest problem is the fact that Haskell does not provide a way to
serialize functions at all[7]. Cloud Haskell solves the function serialization problem through the
distributed-static[8] package, which requires some restrictions in the way functions are defined to
work.

2.4 Dependent Typing

Adependent typeis a type that depends on a value.[9] Dependent types are a way to express relation-
ships between values inside of a type system. The canonic example for dependent types is a length
indexed vector. A length indexed vector is a list which length is derivable from its type. This can be
defined as a Haskell GADT[10]:

data Vec (1 :: Nat) (a :: *) where
VNil :: Vec 0 a
VCons :: a -> Vec 1 a -> Vec (1L + 1) a

Where Nat is a kind that represents positive integers as types. A kind can be thought of as a type of
types[11]. The kind of complete type in Haskell, like Bool is called *[12]. In contrast the type of a type
constructor like Maybe has the kind x -> x. Where x -> * means that this type constructor will
produce a type of kind x if it is provided with a type of kind x. The DataKinds[13] language extension
provides a way to promote data types to kinds. The value constructors of the promoted datatype
become types or type constructors. There are no values associated with the resulting types. The only
use of these types is as shadow types or arguments to type families and typeclasses. Take for example
the type data Bool = True | False. If we promote Bool to a kind we can create a version of
Maybe that keeps the information whether or not it contains a value in its type:

Philipp Dargel 7

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

data CoolMaybe (b :: Bool) a where
CoolNothing :: CoolMaybe ’False a
CoolJust :: a -> CoolMaybe ’True a

Notice that promoted values are preceded by a ’ to distinguish them from their value counterparts.
For example, if we encounter the type CoolMaybe ’True Stringforexample we know thatavalue
of this type has to always contain a value of type String. We can use this information to create a safe

version of fromJust:

fromCoolJust :: CoolMaybe ’True a -> a
fromCoolJust (CoolJust a) = a

In order to call this function we first have to prove that the first type argument of CoolMaybeis * True.
To define functions that operate on such a type we also have to reflect he transformations in the type.

firstCool :: CoolMaybe a c -> CoolMaybe b c -> CoolMaybe (Or a b) c
firstCool (CoolJdust a) (CoolJust _) = CoolJust a
firstCool (CoolJdust a) CoolNothing = CoolJust a
firstCool CoolNothing (CoolJust a) CoolJust a
firstCool CoolNothing CoolNothing = CoolJust a

In this example And is a typefamily. That is, a function on types:

type family Or (a :: Bool) (b :: Bool) :: Bool where

Or True b = ’True
Or a ’True = ’True
Or a b = ’False

We have to write every possible pattern of value constructors in the definition of firstCool because
Haskell can’t prove that the resulting value has the expected type. For GADTs with more constructors
than this becomes tedious. In those cases it might be beneficial to use typeclasses:

data Proxy (a :: k) = Proxy

class ShowMEmpties (1 :: [*]) where
showMEmpties :: Proxy 1 -> [String]
instance ShowMEmpties ’[] where

showMEmpties _ = []
instance (ShowMEmpties as, Show a, Monoid a) => ShowMEmpties (a ’: as)
where
showMEmpties _ = show (mempty :: a) : showMEmpties (Proxy :: Proxy
as)

Philipp Dargel 8

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

These type classes shift the burden of proof onto the user. Each time you want to call showMEmpties
you will also have to prove that an instance ShowMEmpties exists for the specific 1 you want to use.
Nevertheless this is often the only way of working with data kinds.

2.4.1 singletons

Since types and values are fundamentally different in Haskell, there is no native way to demote a pro-
moted data constructor back to avalue. That means once we promote True to ’ True we can’t retrieve
avalue of type Bool from the type ’ True even though the relationship is clear. In fact in the typesys-
tem the kind Bool and the type Bool don’t have any connection anymore. The singletons package
tries to fix this shortcoming[14]. singletons provides a typefamily Sing that associates each promoted
kind with its original type. For types in Haskell’s base package singletons provides this mapping out
of the box. For user defined types singletons provides facilities to derive Sing. Additionally singletons
also provides a general way of promoting functions to type families[15].

Since singletons provides general ways to promote and demote types and functions the resulting code
is quite opaque. As a result any library using the singletons library almost certainly will have unread-
able compiler errors. Generating compile errors if a certain behavior violates some invariant is often
the goal of using dependent types. In my implementation | chose not to use the singletons library for
that reason. | still heavily relied on ideas the library is based on but performed the promotions by
hand.

2.5 mtl Monad classes and Monad-transformers

The mtl library provides a suite of classes that generalizes different Monads[16]. A common way of
creating Monads for specific use cases is by composing Monad-transformers[16] For example we can
compose the StateT Monad-transformer with with Wr+iter Monad to get a computation that has a
state and allows do write some output:

type MyComp a = StateT Int (Writer [String]) a
If we now want to perform an operation on Wr1iter we first have to enter the StateT Monad. Lifting

an operation from the Monad-transformers argument Monad to the constructed outer Monad can be
done through a lifting function specific to each Monad-transformer.

1liftMTrans :: Monad m => m a -> MTrans m a
1liftMTrans =

These lifting functions are generalized by the MonadTrans class provided by the transformers pack-
age, which is bundled with each GHC.

Philipp Dargel 9

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

Explicitly lifting each operation to the appropriate level inside a chain of Monad-transformers is cum-
bersome. mt/ Monad classes get rid of lifting altogether, by providing a class for common Monad capa-
bilities. In the MyComp example instead of liftingaWr i ter operationinside StateT the MonadWriter
class can be used. The MonadWr1iter class provides the same functions that are used to interact with
the WriterMonad. The mtl package provides instances of MonadwWriter and other Monad classes
for common Monad-transformers in such a way that if a Monad inside the transformer chain provides
the classes functionality the whole chain does too.

These Monad classes are not only useful for interacting with Monad-transformers, but also when creat-
ing Monads manually. If the created Monad shares some capabilities with acommon Monad or Monad-
transformer, these capabilities can be expressed by providing an instance of that Monad class for the
created Monad.

Another use for these Monad classes is that they allow for a more general expression of monadic code.
For example if you express a monadic computation in terms of MonadWriter instead of Wri ter, the
computation can be used inside of any Monad that implements Monadwriter. This computation can
now be executed in either the strict or the lazy variant of the Wr i ter Monad or any Monad-transformer
chain that containsaWriter orWriterT.

2.6 Haskell Language features

Modern Haskell development involves many language features that are not present in the base lan-
guage of Haskell2010. These features have to explicitly be enabled by enabling language extensions.
Especially working with dependent types and using more advanced features of Haskell’s type system
require many of these language extensions. Language extensions are enabled using LANGUAGE prag-
mas at the beginning of the file for which the extension should be enabled.

« DataKinds: Allows data types to be promoted to kinds and value constructors to types[13].

« TypeFamilies: Adds the ability to define type and data families. A type family can be thought
of as a function on types[17]. Additionally this provides a way to associate types and type fam-
ilies with type classes[17]. When defining an instance of a class all associated types and type
families have to be provided with a binding as well.

« PolyKinds: Allows mixing different kinds. Forexample kin 1 :: [k] could normally only be
of kind x but with PolyKinds it may be any kind.

These extensions are the foundation for dependent typing in Haskell. This enables the definition of
not on types of kind Bool:

type family Not (a :: Bool) :: Bool where
Not ’True = ’False
Not ’False = ’True

Philipp Dargel 10

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

Orevenelem:

type family Elem (e :: k) (1 :: [k]) :: Bool where

Elem e (e ’: as) = ’True
Elem e (a ’: as) = Elem e as
Elem e ’[] = ’False

2.6.1 Heterogeneous collections

Another example of the usage of some of these extensions are heterogeneous lists. That is lists that
can hold values of different types at once. This can be achieved by defining a GADT HList that is
parametrized by a list of types such that each element of HL1i st has a corresponding entry in the list

of types:
data HList (1 :: [*]) where
HNil :: HList ’[]
HCons :: a -> HList as -> HList (a ’: as)

infixr 5 ‘HCons*

With this we can now create Lists with where each element is of a different type:

1 :: HList ’[Int, String, Bool]

1 = 42 ‘HCons® "Hello World" ¢‘HCons® False ‘HCons® HNil

Itis also possible to create a lookup function for elements of a given type that is only defined if the list
contains an element of that type:

class HElem e (1 :: [*]) where
hElem :: HList 1 -> e

instance {-# Overlaps #-} HElem e (e ’: as) where
hElem (HCons e _) = e
instance {-# Overlappable #-} HElem e as => HElem e (a ’: as) where

hElem (HCons _ as) = hElem as

Unlike the previous example a type class is used instead of a type family. Matching rules differ be-
tween type families and type classes. Type families allow Non-Linear Patterns, that is the same vari-
able may occur multiple times inside of the pattern, but type classes do not. Type classes are matched
exclusively by structure. As a result both instance declarations of HE Lem look the same to compiler.

Philipp Dargel 1

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

Constraints are only checked after the compiler already committed to a given declaration. In this con-
text HElem e (e ’: as) isequivalentto (e ~ a)=> HElem e (a ’: as). To prioritize which
instance declaration will be chosen by the compiler the instances have to be annotated with overlap-
ping instance pragmas.

2.6.2 Heterogeneous Maps

A heterogeneous map may hold values of different types at once. A type of a value is determined
by the type of the key it is associated with. The easiest way to associate a value type with a key is
to parametrize the key by the type of the value. The map itself is parametrized by the type of key
used. A lookup function may then have the signature lookup :: k v -> HMap k -> Maybe v
andinsert :: k v -> v -> HMap k -> HMap k.

There are ways to implement a completely typesafe variant of HMap, but if there is no way of manip-
ulating the map directly it is safe to use unsafeCoerce as long as the APl is safe.

The base for this HMap will be a standard Data.Map.Map. To be able to use that map both keys and
values have to be of a single type. This can be achieved by creating custom Key and Elem types that
capture and hide the concrete value type.

data Key k where
Key :: k a -> Key k

data Elem where
Elem :: a -> Elem

newtype HMap k = HMap (Map (Key k) Elem)
derdiving Eq

To be able to use Key and Elem as key and value of Map Key has to implement Ord. Additionally we
need equality on HMap for which both Key and Elem have to implement Eq.

To implement either Eq or Ord it is necessary to have aninstance Ord (k a) forall a. Unfortunately
itis not possible to use the forall keyword in the context of instance declarations (yet [18]). A work
around until GHC 8.6 is to capture all commonly used classes inside of the Key and Elem construc-
tors.

data Key k where
Key :: (Typeable (k a), Ord (k a), Show (k a))
=> k a -> Key k

instance Show (Key k) where

Philipp Dargel 12

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

showsPrec d (Key k) = showsPrec d k

instance Eq (Key k) where
Key a == Key b = Just a == typeRep b

instance Ord (Key k) where
-- first order by type then, if type are the same use Ord
Key a ‘compare‘ Key b = typeRep [a] ‘compare‘ typeRep [b]
<> Just a ‘compare‘ cast b

2.6.3 Typeable

In the process of compiling Haskell, all type information is removed since it is not needed at run-
time[19]. Type information may be useful at runtime. If a type is hidden via existential quantification
it may be useful to be able to get a String representation of the captured type for debug and/or Show
purposes for example. Without some way of retrieving type information at runtime it would also be
impossible to define an Eq instance for data types using existential quantification.

Runtime type information is provided by Data. Typeab'le in Haskell2010. The type class Typeab'le
provides a single function typeRep# :: TypeRep a where TypeRep a is a representation of the
type a. typeRep# and TypeRep a are only used internally. The module Data.Typeable exports
ways to leverage this functionality. GHC will derive an instance of Data.Typeab'le for every data
type, type class and promoted data constructors automatically[20]. Manually defining an instance of
Data.Typeab'le will cause an error to ensure that the type representation is valid.

Showing a type

When dealing with complex types it is helpful to be able to have a way to print types at runtime. For
example when capturing types with existential quantification it is helpful to include the captured type
in the String representation of the data type. It is also quite useful to be able to print the type of an
Actor, deep inside of an Actor system.

Since TypeRep implements Show we can print any type at runtime. The Show implementation of
TypeRep does not produce output that is equivalent to the way types are represented in Haskell error
messages. This mismatch is partly due to the fact that there is no way to represent type aliases using
TypeRep and some issues with the Show implementation itself[21].

showsType :: forall a. Typeable a => ShowS
showsType = showString "<<"
. shows (typeRep (Proxy @a))

Philipp Dargel 13

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

. showString ">>"

Dynamic values and type casting

Typeab'le enables the creation of Dynamic values in Haskell. To represent a dynamic value, all we
have to do is capture the Typeable instance of the given type. Dynamic values are implemented by
Data.Dynmaicinbase. Toconstructadynamicvalue toDyn :: Typeable a => a -> Dynamic
is used. To extract a value fromDynamic :: Typeable a => Dynmaic -> Maybe a which only
returns a value if the expected type a is the same as the captured one. Data extraction is only possible
because there are runtime type representations that can be compared.

In the same way values can be extracted from dynamic values, it is possible to define a way to condi-
tionally cast a value of one type to another, as long as those two types are the same, where it is only
known at runtime if that is the case:

cast :: forall a b. (Typeable a, Typeable b) => a -> Maybe b

cast does not provide a way to actually convert a value of one type to another. It only postpones the
type equality check to the runtime.

Take the following function appendIfString for example:

appendIfString :: Typeable a => String -> a -> String
appendIfString str a = str ++ (fromMaybe "" (cast a))

If appendIfStringis called with appendIfString "Hello ""World" itreturns "Hello World
" butifitis called with appendIfString "Hello "42itreturns "Hello ".

3 Implementation

3.1 Overview

The APlis designed to be close to the APl of Akka where appropriate. That means an Actor’s behavior is
modeled by a function from a message to an action. An Actors action is a Monad where all interactions
with other Actors and the Actor system itself are functions that produce values in that Monad.

To be able to perform any type level computations on Actors and Actor systems there has to be some
way of identifying specific kinds of Actors by type. Actors have to implement a typeclass Actor a
where a is the type we can use do identify Actors by. The Actor class has a single function called

Philipp Dargel 14

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

behavior, which describes the behavior of the Actor. What kind of messages an Actor can handle
and what kind of Actors it may create in response has to be encoded in some way as well.

The Monad which models an Actors actionis also a typeclass, that has roughly the form class Monad

m => ActorContext m. Incontrast ActorContext could also be defined as a concrete data type
that implements Monad. This ActorContext is an mtl style Monad class, which makes it possible
to have different implementations of Actor systems at once. This the creation of one implementa-
tion that is meant for testing Actors and another one that actually performs these actions inside of a
distributed Actor system. Defining the Monad as an typeclass also makes it possible to use different
backends without rewriting the actors themselves. One such backend may be cloud-haskell. Imple-
mentations for testing are also just different backends in this architecture.

3.2 Actor

Since Akka is not written in a pure functional language, each Actor can also invoke any other piece of
code. Theimplicit capability to perform arbitrary actions is very useful for defining real world systems.
So we have to provide a way to perform I0 actions as well if we want to use this framework in a real
world situation. Actors may also want to manage the Actor system itself in some capacities that exceed
the Actor model axioms. For example stopping it all together, which also turns out to be very useful.

We need a way to identify specific Actors at compile time to be able to reason about them. The best
way to do so is by defining types for Actors. Since Actors have a state this state type will be the type
we will identify the Actor with. We could have chosen the message type but the state type is more
characteristic.

data SomeActor = SomeActor
deriving (Eq, Show, Generic, Binary)
Note that we derive Generic and Binary. This allows the state of an Actor to be serialized.

An Actor now has to implement the Actors type class. On this typeclass we can ensure that the Actor
state is serializable and can be printed in human-readable form to be included in error messages and
log entries.

class (Show a, Binary a) => Actor a where
The first member of this class will be a type family that maps a given Actor state type (Actor type for

short) to a message type this Actor can handle. If the message type is not specified, it is assumed that
the Actor only understands () as a message.

type Message a

Philipp Dargel 15

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

type Message a = ()

Notice that the default definition for Messag ais (). This default definition is meant for actors that
do not actually expect any data inside of their messages, but rather use messages as triggers for their
behavior. Another sensible default definition for Message a would be Void, which would indicate
that the actor can not receive any messages at all. If the message type of an Actor is Void the only
way for that actor to act is on receiving signals.

To be able message sending in distributed systems we have to ensure that they are serializable. They
have to fulfill the same constraints as the Actor type itself. For this we create a constraint type alias
(through the language extension ConstraintKinds):

type RichData a = (Show a, Binary a)

Now the class header can be changed to:

class (RichData a, RichData (Message a)) => Actor a where

Instead of a constraint type alias we could also have used a new class and provided a single instance

(Show a, Binary a)=> RichData a. This would have allowed RichData to be partially ap-
plied. There is currently no need to do this, since the RichData constraint doesn’t have to be sent
around by itself.

Next we have to define a way for Actors to handle Messages.

behavior :: Message a -> ActorContext ()

ActorContext will be a class that provides the Actor with a way to perform its actions.

Additionally we have to provide a start state the Actor has when it is first created:

startState :: a
default startState :: Monoid a => a
startState = mempty

3.3 ActorContext

We need a way for Actors to perform the Actor operations. The most straightforward way to imple-
ment these actions would be to use a Monad transformer for each action. Creating and sending could
be modeled withWriterT [SystemMessage] where SystemMessage encapsulates each both the
intent to create an actor as well as sending a message to a specific actor. Changing the internal state

Philipp Dargel 16

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

of the actor could be achieved through StateT s where s istheinternal state of the actor or the actor
type to be more specific.

But here we encounter several issues:

1. To change the state we must know which Actors behavior we are currently describing. Since
the actor type has to be deductible from the context type. That means the type has to be more
complex then simply ActorContext a.

2. To send a message we must ensure that the target Actor can handle the message. If we allow
values of SystemMessage to be created freely we can not ensure that the receiving actor can
handle the sent message.

3. Tocreatean Actor we have to pass around some reference to the Actor type of the Actor to create.

The first issue can be solved by adding the Actor type to ActorContext as a type parameter.

To be able to send a message in a type safe way, we need to retain the Actor type. If we would
make the Actor type explicit in the WriterT type though, we would only be able to send messages
to Actors of that exact type. Luckily there is a way to get both. Using the language extension
ExistentialQuantification we can capture the Actor type with a constructor without exposing
it. To retrieve the captured type you have to pattern match on the constructor. We can also use
ExistentialQuantification to close over the Actor type in the create case. With this technique
we can create a wrapper for send and create actions:

data SystemMessage
= forall a. Actor a => Send (ActorRef a) (Message a)
| forall a. Actor a => Create (Proxy a)
deriving (Eq, Show)

ActorRef provides some way to identify an Actor inside an Actor system we will define later. Proxy
aisjust a datatype with a unit constructor and a phantom type, that provides a way to pass references
to types around. SystemMessage could also have been defined in GADT-notation, which would have
been semantically equivalent.

Unfortunately we cannot derive Generiic for data types that use existential quantification and thus
can not get a Binary instance for free. But as | will show later we do not need to serialize values of
SystemMessage so this is fine for now.

With all this information we can define ActorContext as follows:

newtype ActorContext a v
= ActorContext (StateT a (Writer [SystemMessage]) v)
deriving
(Functor

Philipp Dargel 17

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

, Applicative

, Monad

, MonadWriter [SystemMessage]
MonadState a

Notice that we only need one Writer since we combined create and send actions into a single type.
Since ActorContext is nothing more than the composition of several Monad transformers it is itself
aMonad. Using GeneralizedNewtypeDeriving we can derive several useful Monad instances. The
classes MonadWriter and MonadState are provided by the mt1 package.

Since we added the Actor type to the signature of ActorContext we need to change definition of
behavior to reflect this:

behavior :: Message a -> ActorContext a ()

By deriving MonadState we get a variety of functions to change the Actors state. The other Actor
actions can now be defined as functions:

3.3.1 send

Since there is an instance for MonadWriter [SystemMessage] for ActorContext, we can use
tellfrom MonadwWriter to emit SystemMessages.

send :: Actor a => ActorRef a -> Message a -> ActorContext b ()
send ref msg = tell [Send ref msg]

Notice that the resulting ActorContext does not have a as its Actor type but rather some other type
b. ais the type of Actor the message is sent to and b is the type of Actor of which the behavior is
being described. The send function does not have an Actor b constraint since this would needlessly
restrict the use of the function itself. When defining an Actor it is already ensured that whatever b is,
itwill bean Actor.

We can also provide an akka-style send operator as a convenient alias for send:

(!) = send

3.3.2 create

As with send we can use MonadWriter to emit SystemMessages.

Philipp Dargel 18

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

create’ :: Actor b => Proxy b -> ActorContext a ()
create’ b = tell [Create b]

As indicated by the ’ this version of create is not intended to be the main one. For that we define:

create :: forall b a. Actor b => ActorContext a ()
create = create’ (Proxy @b)

In combination with TypeApplications this enables us to create Actors by just writing create
@TheActor wich shortens the ordinary create’ (Proxy :: Proxy TheActor).

3.3.3 ActorRef

We need a way to reference Actors inside an Actor system. The most straightforward way to do this is
by creating a data type to represent these references. This type also has to hold the Actor type of the
Actor it is referring to. But how should we encode the Actor reference? The simplest way would be to
give each Actor some kind of identifier and just store the identifier:

newtype ActorRef a = ActorRef ActorId

References of this kind cannot be be created by the user since you should not be able to associate any
ActorId with any Actor type, since there is no way of verifying that a given id is associated a given
Actor type at compile time. The best way to achieve this is to modify the signature of create toreturn
a reference to the just created Actor.

create :: forall a. Actor a => ActorContext b (ActorRef a)

Additionally it would be useful for Actors to have a way to get a reference to themselves. We can give
Actors a way to refer to themselves by adding:

self :: ActorContext a (ActorRef a)

To ActorContext.

Composing references

If we assume that a reference to an Actor is represented by the Actors path, relative to the Actor system
root, we could intheory compose Actor references or even create our own. To allow for Actor reference
composition in a typesafe manner we need to know what Actors an Actor may create. To expose which
Actors an Actor may create, we add a new type family to the Actor class.

Philipp Dargel 19

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

type Creates a :: [%]
type Creates a = ’[]

The type family Create has the kind [*], which represents a list of all Actor types Actor a can create.
We additionally provide a default that is the empty list. So if we do not override the Creates type
family for a specific Actor, we assume that this Actor does not create any other Actors.

We can now also use the Create typefamily to enforce the assumption on the create’ and create
functions that the type of any Actor created by an Actor has to be presentin the Create alist.

create’ :: (Actor b, Elem b (Creates a)) => Proxy b -> ActorContext a

Q)

Where Elemis a type family of kind k -> [k] -> Constraint that works the same as elem only
on the type level.

type family Elem (e :: k) (Ll :: [k]) :: Constraint where
O

Elem e as

Elem e (e ’: as)
Elem e (a ’: as)

There are three things to note with The Elem type family:

1. ltis partial. It has no pattern for the empty list. Since it’s kind is Constraint this means, the
constraint is not met if we would enter that case either explicitly or through recursion.

2. The first pattern of Elemis non-linear. That means that a variable appears twice. e appears as
the first parameter and as the first element in the list. This is only permitted on type families in
Haskell. Without this feature it would be quite hard to define this type family at all.

3. We leverage that n-tuples of Constraints are Constraints themselves. In this case () can
be seen as an O-tuple and thus equates to Constraint that always holds.

The Creates typefamily is useful for defining assumptions that concern the hierarchy of the Actorsys-
tem. For example we can formulate an assumption that states that all Actors in a given Actor system
fulfill a certain constraint.

type family AllActorsImplement
(c :: x => Constraint) (a :: %) :: Constraint where
AllActorsImplement c a
= (c a, AllActorsImplementHelper c (Creates a))
type family AllActorsImplementHelper
(c :: x => Constraint) (as :: [*]) :: Constraint where
AllActorsImplementHelper c ’[] = ()
AllActorsImplementHelper ¢ (a ’: as)

Philipp Dargel 20

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

= (AllActorsImplement c a, AllActorsImplementHelper c as)

We can also enumerate all Actor types in a given Actor system.

What we can’t do unfortunately is to create a type of kind Data. Tree that represents the whole Actor
system since it may be infinite. The tree representation of the following example would be infinite.

data A = A
instance Actor A where
type Creates A = ’[B]

data B = B
instance Actor B where
type Creates B = ’[A]

The type for an Actor system that starts with A would have to be ’Node A ’[Node B ’[Node A ’
[...11]. Wecan represent any finite path inside this tree as a type.

Since any running Actor system has to be finite we can use the fact that we can represent finite paths
inside an Actor system for our Actor references. We can parametrize our Actor references by the path
of the Actor that it refers to.

The Actor typeis not sufficient to refer to a given Actor. Since an Actor may create multiple Actors of the
same type you also need a way to differentiate between them in order to reference them directly. The
easiest way would be to order created Actors by creation time and use an index inside the resulting
list. There are two problems with this approach. Firstly we lose some type safety since we can now
construct Actor references to Actors for which we can not confirm that they exist at compile time.
Secondly this index would not be unambiguous since an older Actor may die and thus an index inside
the list of child Actors would point to the wrong Actor. We could take the possibility of Actors dying
into account by giving each immediate child Actor an unique identifier. Composing an Actor reference
would require the knowledge of the exact identifier in that case. Having to know the unique identifier
for an Actor to create an Actor reference to it would make composition unfeasible.

| decided to remove the ability to compose Actor references since it would impose to many restrictions
onto the form that Actor references could take. Furthermore the usability would be potentially limited.

Type families created in the process of implementing composition are still useful for other purposes.
These type families allow type level computation on specific groups of Actors deep inside of an Actor
system.

Implementation specific references

Philipp Dargel 21

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

Differentimplementations of ActorContext might want to use different data types to refer to Actors.
Since we do not provide a way for the user to create references themselves we do not have to expose
the implementation of these references.

The most obvious way to create implementation specific data types is to associate a given
ActorContext implementation with a specific reference type. This can be done using an addi-
tional type variable on the class, a type family or a data family. Here the data family seems the best
choice to represent implementation specific reference data types since it’s injective. The injectivity
allows us to not only know the reference type from from an ActorContext implementation but also
the other way round.

data CtxRef m :: * -> *%

Additionally we have to add some constraints to CtxRef. Since we need to be able to serialize CtxRef
, equality and a way to show them would also be nice. To ensure that CtxRef is serializable we can
reuse the RichData constraint.

class (RichData (CtxRef m)), ...) => ActorContext ... where

In our simple implementation I’'m using a single Word as a unique identifier but we can’t assume that
every implementation wants to use it.

Now we have another problem though. Messages should be able to include Actor references. If the
type of these references now depends onthe ActorContext implementation we need a way for mes-
sages to know this reference type. We can achieve this by adding the Actor context as a parameter to
the Message type family.

type Message a :: (* -> %) -> *

Here we comein a bind because of the way we chose to define ActorContext. The functional depen-
dencyin ActorContext a m | m -> aforces us to create unwieldy typesignatures in this case. It
states that we know a if we know m. This means that if we expose m to Message the message is now
bound to a specific a. This is problematic since we only want to expose the type of reference, not the
Actor type of the current context to the Message. Doing so would bloat every signature that wants to
move a message from one context to another with equivalence constraints like:

forall a b m n. (ActorContext a m, ActorContext b n, Message a m ~
Message b n) =>

Instead we add the reference type itself as a parameter to Message. This alleviates the problem only a
little bit, since we need the actual ActorContext type to retrieve the concrete reference type. So we
would only delay the constraint dance and move it a little bit. These constraints would mean many

Philipp Dargel 22

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

additional type parameters to types and functions that do not actually care about them. Compile
errors would also come more cluttered, without adding useful information to the user.

Dueto all of the stated concerns, | decided against the idea of ActorContextimplementation specific
reference types.

Instead of trying to create different representations for Actor references | chose to represent them
using a ByteString. Since Actor references have to be serializable anyway we can represent them
by a ByteString.

newtype ActorRef a = ActorRef ByteString

This might go a little against our ideal, to keep the code as typesafe as possible, but in this case the
trade off should be considered acceptable. Firstly other data types that might have taken the place of
ByteString would not be any safer. We can still keep the user from being able to create references
by themselves by not exporting the ActorRef constructor. We could expose it to ActorContext
implementers through an internal package.

Sending references

A core feature that is necessary for an Actor system to effectively communicate is the ability to send
Actor references as messages to other Actors.

The most trivial case would be that the message to the Actor is an Actor reference itself.

instance Actor Sender where
type Message Sender = ActorRef Receiver

This way limits the Actor type of the receiver to be a single concrete type. In particular we have to know
the type of the Actor (Receiver in the following) when defining the Actor that handles the reference
(Sender in the following). So we would like this reference type to be more generic. A simple way to
do this is to add a type parameter to the Sender that represents the Receiver.

instance (Actor a, c a) => Actor (Sender a) where
type Message (Sender a) = ActorRef a

c may take any constraint that the Receiver Actor has to fulfill as well. This is more generic but a still
represents a concrete type at runtime. The way this is normally done in Haskell is by extracting the
commonalities of allReceiver typesinto atypeclass and ensure that all referenced Actorsimplement
that typeclass.

Philipp Dargel 23

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

class Actor a => Receiver a
instance Receiver a => Actor (Sender a) where
type Message (Sender a) = ActorRef a

This is a variation on the previous implementation, since we only consolidated c into the Receiver
class. Unfortunately we can notuse forallin constraint contexts (yet; see QuantifiedConstraints
). To get around this restriction we can create a new message type that encapsulates the constraint
like this:

data AnswerableMessage c = forall a. (Actor a, c a) =>
AnswerableMessage (ActorRef a)

With this we can define the Sender like this:

class Actor a => Receiver a
instance Actor Sender where
type Message Sender = AnswerableMessage Receiver

Receiver should not perform long running tasks, since that would provide a way to circumvent the
Actor model somewhat. Since any functions defined on Receiver are executed the context of the
Sender, the message implicitly contains instructions for the Sender to run. Ideally the class should
only provide a way to construct a message the Receiver understands from a more generic type. We
can express this with a typeclass like this:

class Actor a => Understands m a where
convert :: m -> Message a

A Sender may use this class like this:

instance Actor Sender
type Message Sender = AnswerableMessage (Understands SomeType)
onMessage (AnswerableMessage ref) = do
ref ! convert someType

Solving the problem of sending generic Actor references presents a huge problem though. Using ex-
istential quantification prevents AnswerableMessage from being serialized. Serializability is a core
requirement for messages though.

To serialize arbitrary types we would need some kind of sum-type where each constructor corre-
sponds with one concrete type. Since we can enumerate every Actor type of Actors inside a given

Philipp Dargel 24

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

Actor system from the root Actor, we could use this to create a dynamic union type. An example of a
dynamic union type would be Data.OpenUnion from the freer-simple package. To construct this
type we need a reference to the root Actor, so that type has to be exposed to the Actor type in some
way, either as an additional type parameter to the Actor class orto the Message typefamily. Adding a
type parameter to Actor or Message would require rewriting ab big chunk of the codebase. Sending
ActorRef values directly is the only possible way for now.

3.3.4 Flexibility and Effects

By defining ActorContext as a datatype, we force any environment to use exactly this data type.
This is problematic since Actors can only perform their three Actor actions in the implementation as
discussed so far. ActorContext is not flexible enough to express anything else. We could change
the definition of ActorContext to be a Monad transformer over 10 and provide a MonadIO instance.
This would defeat our goal to be able to reason about Actors, since we could now perform any 10 we
wanted.

Luckily Haskell’s type system is expressive enough to solve this problem. Due to this expressiveness
there is a myriad of different solutions for this problem. We will take a look at two approaches that
integrate well into existing programming paradigms used in Haskell and other functional languages.

Both approachesinvolve associating what additional action an Actor can take with the Actor instance
definition. This is done by creating another associated typefamily in Actor. The value of this type-
family will be a list of types, that identify what additional actions can be performed. What this type will
be depends on the chosen approach. The list in this case will be an actual Haskell list but promoted
to a kind. This is possible through the DataKinds extension.

mtl style Monad classes

In this approach we use mtl style Monad classes to communicate additional capabilities of the Actor.
This is done by turning ActorContext into a class itself where create and send are class members
and MonadState aisasuperclass.

The associated typefamily will look like this:
type Capabilities a :: [(x -> *) -> Constraint]
type Capabilities a = ’[]

With this the signature of behavior will change to:

behavior :: (ActorContext ctx, ImplementsAll (ctx a) (Capabilities a)
) => Message a -> ctx a ()

Philipp Dargel 25

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

Where ImplementsAll is a typefamily of kind Constraint that checks that the concrete context
class fulfills all constraints in the given list:

type family ImplementsAll

(a :: k) (c :: [k => Constraint]) :: Constraint where
ImplementsAll a (c ’: cs) = (c a, ImplementsAll a cs)
ImplementsAll a ’[] = ()

To be able to run the behavior of a specific Actor the chosen ActorContext implementation has to
also implement all Monad classes listed in Capabilities.

newtype SomeActor = SomeActor ()
deriving (Eq, Show, Generic, Binary, Monoid)
instance Actor SomeActor where
type Capabilities SomeActor = ’[MonadIO]
behavior () = do
1iftIO $ putStrLn "we can do IO action now"

Since MonadIO is in the list of capabilities, we can use its 17 ftIO0 function to perform arbitrary 10
actions inside the ActorContext.

MonadIO may be a bad example though since it exposes too much power to the user. What we would
need here is a set of more fine grain Monad classes, that each only provide access to a limited set of
10 operations. Examples would be: a network access Monad class, file system class, logging class, etc.
These would be useful even outside of this Actor framework.

the Eff Monad

The Eff Monad as described in the freer, freer-effects and freer-simple packages is a free
Monad[22] that provides an alternative way to Monad classes and Monad transformers to combine
different effects into a single Monad.

In category theory a free Monad is the simplest way to turn a functor into a Monad[22]. In other words
it’s the most basic construct for that the Monad laws hold given a functor. The definition of a free
Monad involves a hefty portion of category theory. We will only focus on the aspect that a free Monad
provides a way to describe monadic operations, without providing interpretations immediatel. In-
stead there can be multiple ways to interpret these operations.

When using the Eff Monad there is only one monadic operation:

send :: Member eff effs => eff a -> Eff effs a

Philipp Dargel 26

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

effshasthekind [* -> x] andMember checksthateffisanelementofeffs. Everyeff describes
a set of effects. We can describe the Actor operations with a GADT that can be used as effects in Eff:

data ActorEff a v where

Send :: Actor b => ActorRef b -> Message b -> ActorEff a ()
Create :: Actor b => Proxy b -> ActorEff a ()
Become :: a —> ActorEff a ()

With this we can define the functions:

send :: (Member (ActorEff a) effs, Actor b)
=> ActorRef b -> Message b -> Eff effs ()
send ref msg = Freer.send (Send ref msg)

create :: forall b a effs.
(Member (ActorEff a), Actor b)
=> Eff effs ()
Freer.send $ Create (Proxy @b)

create

become :: Member (ActorEff a) effs => a -> Eff effs ()
Freer.send . Become

become

We can also define these operations without a new data type using the predefined effects for State
andWriter:

send :: (Member (Writer [SystemMessage]) effs, Actor b)
=> ActorRef b -> Message b -> Eff effs ()
send ref msg = tell (Send ref msg)

create :: forall b a effs.
(Member (Writer [SystemMessage]), Actor b)
=> Eff effs ()
create = tell $ Create (Proxy @b)

become does not need a corresponding function in this case since State already defines everything
we need.

3.4 Testing

One of the goals of the Actor framework is testability of Actors written in the framework. The
main way that testability is achieved, is by implementing a special ActorContext that pro-
vides a way to execute an Actors behavior in a controlled environment. The name of this

Philipp Dargel 27

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

ActorContext is MockActorContext. MockActorContext has to provide implementations for
create, send and MonadState. Additionally we need a way to execute a MockActorContext
One way to define MockActorContext is using Monad transformers in conjunction with

GeneralizedNewtypeDeriving

newtype MockActorContext a v = MockActorContext
(ReaderT (ActorRef a)
(StateT CtxState
(Writer [SystemMessage])
) v
)
deriving
(Functor
, Applicative
, Monad
, MonadWriter [SystemMessage]
MonadReader (ActorRef a)

Where CtxState is used to keep track of Actor instances, that currently are known to the context.

data CtxState = CtxState
{ nextId :: Word
, states :: HMap ActorRef
}
deriving
(Show
Eq

MonadState is a prerequisite for ActorContext so an instance of that has to be provided.

instance Actor a => MonadState a (MockActorContext a) where
get = do
ref <- ask
MockActorContext . gets $ ctxLookup ref
put a = do
ref <- ask
MockActorContext $ do
CtxState i m <- get
let m’ = HMap.hInsert ref a m
put $ CtxState i m’

Philipp Dargel 28

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

With this the actual definition of ActorContext for MockActorContext is pretty short.

instance (Actor a, MockActorContext a ‘CanRunAll® a)
=> ActorContext a (MockActorContext a) where

self = ask

create’ _ = do
ref <- MockActorContext ctxCreateActor
tell [Left $ Creates ref]
pure ref

p ! m-= tell [Right $ Send p m]

To execute asingle MockActorContext action, allMonad transformer actions have to be executed. It
does not make sense though, to export this capability directly, since CtxState should not be visible
to the user. So exported variants on the core running function construct CtxState values themselves.

runMockInternal :: forall a v. Actor a
=> MockActorContext a v -> ActorRef a -> CtxState
-> ((v, CtxState), [SystemMessage])
runMockInternal (MockActorContext ctx) ref
= runWriter
runStateT (runReaderT ctx ref)

3.5 executing in a distributed environment

When executing an Actor inside a distributed environment, one has to take care of message passing
and the actual concurrent execution. cloud-haskell already provides a solution for this problem, in
form of an Erlang-style Actor framework. Problematically it’s messages are untyped and every Actor
has access to I0. This enables us to execute the previously defined typed Actors on top of it.

As with the testing case the central entry point will be the ActorContext. All actions in cloud-haskell
are inside of the Process Monad. So we need to keep track of the Actors state and access to the

Process Monad. This can be achieved using a newtype wrapper around StateT transformer of
Process:

newtype DistributedActorContext a v
= DistributedActorContext
{ runDAC :: StateT a Process v

}

Philipp Dargel 29

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

deriving (Functor, Applicative, Monad, MonadState a, MonadIO)

GeneralizedNewtypeDerivingisusedtoderivethe normally not derivable instances like MonadIO
. ActorContext has to be implemented manually.

instance (DistributedActorContext a ‘A.CanRunAll‘¢ a)
=> A.ActorContext a (DistributedActorContext a) where
self = A.ActorRef . encode <$> liftProcess getSelfPid
(A.ActorRef pid) ! m = 1liftProcess $ send (decode pid) m

create’ a = liftProcess $ do
nid <- processNodeId <$> getSelfPid
pid <- spawn nid (staticRunActor a)
return . A.ActorRef . encode $ pid

All we have to do to implement self and (!) is to wrap/unwrap the process id in an ActorRef
and use the functions that Process gives us. Notice that create’ uses staticRunActor instead
of runActor. More on this in the next section

Executing an Actor in this context, now means dispatching a Created signal and continuously
polling for messages.

runActor :: forall a proxy.
(A.Actor a, DistributedActorContext a ‘A.CanRunAll¢ a)
=> proxy a —-> Process ()

runActor _
= void
runStateT (runDAC runActor?’) $ A.startState @a
where
runActor’ = initActor *> forever awaitMessage

initActor = A.behavior . Left $ A.Created
awaitMessage = A.behavior
Right =<< liftProcess (expect @(A.Message a))

3.5.1 Creating Actors

Creating an Actor means spawning a new Process that executes runActor for that specific Actor
type. The problem here is that the instruction on what the Process should do has to be serializ-
able. Since functions are not Serializability in Haskell cloud-haskell provides a workaround with the
distributed-static package.

Philipp Dargel 30

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

It provides a way to serialize references to values and functions that are known at compile time and
compose these. This is done using a heterogeneous map that has to be manually populated with all
static values that the program may encounter while running. Unfortunately there is no way to register
polymorphic functions like runActor this way. Luckily there is a way to enumerate all Actor types that
existin a given Actor system and could register a version of runActor for each one. As the hierarchy of
the Actor system, described by the Creates typefamily is potentially infinite, the registration would
have to perform cycle detection on the type level.

Alternatively we can also parametrize the actor context by a type list of kind [*]. This list represents
a flattened version of the Actor system’s hierarchy. Each actor type inside of the actor system has to
be a an element of that list. All ActorContext operations have to check that the relevant Actors are
in fact elements of that list. Although this solution may appear trivial, | discovered it at a very late
stage of the project. As a result this solution is not incorporated into the main library code. A proof of
concept exists in the source repository at . /cloud-fix/Main. hs. This proof of concept also includes
a running example of a solution for the dining philosophers problem as well as a ping pong example.

4 Results

I demonstrated that it is possible to create an Actor framework in Haskell that is capable of expressing
many constraints about it’s hierarchy and the capabilities of the Actors init, using the type system. The
created framework allows a wide range of properties of actors to be expressed and reasoned about at
compile time. Furthermore the Capabilities mechanism and the the ability to run Actors defined
in Dakka to be against multiple backends makes it extensible, too. To test Actors they just have to be
run against a testing backend. If the provided testing backend isn’t sufficient it can be augmented
with additional capabilities by implementing appropriate type classes or using newtypes.

4.1 Dependent types in Haskell

Dependent types are a powerful tool in Haskell. Unfortunately their usability is somewhat limited
since the language support for them is also limited. The lack of native support does not make its use
impossible but prevalent usage cumbersome. Promotion of values to types and demotion from types
to values has to be done manually. The singletons, that aims to aleviate this problem, is easy enough
to use but produces hard to debug type expressions. As a result of this | decided to reduce the usage
of dependent types in my code and do without the singletons library altogether. Even though they are
not dependent types many of the more advanced type-level-computation features Haskell provides
were useful. Dependent typing in Haskell definetly requires better native support before it can be
widely be adopted.

Philipp Dargel 31

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

4.2 Cloud Haskell

Since most of the effort went into creating a typed interface rather then its actual execution, | can’t
comment on how cloud haskell actually performs as a backend for the created interface.

The implementation was very straightforward for the most part since cloud haskell provides similar
primitives to the APl itself. Parts that required the serialization of polymorphic values were not that
easily implemented. As statet in[7], GHC native support for static values was planned originally. With-
out native support for static values serializing polymorphic values requires that all possible type pa-
rameters can be enumerated. Functions with the resulting monomorphic types can then be registered
as static values.

4.3 Future Work

Although Dakka can be used to create working Actor systems some parts can be improved. These
range from minor concers about the codebase to future research topics. The codebase could use some
cleanup and improvements in usability.

4.3.1 General cleanup

The codebase has been growing organically in the course of the project. As a result, the code can
be streamlined and cleaned up. Since the creation process was also a learning experience it con-
tains a few remnants of experiments that are no longer needed. For example | would like to rename
ActorContext to better to ActorAction. For this framework to be usable it also requires better
documentation. Both Haddock comments inside of the code and basic tutorials would be needed.

4.3.2 Automatically flattening the Actor System type hierarchy

Currently the user has to provide a flat representation of all Actor types inside of an Actor system if
they want to run it manually. This representation could be derived from the root Actor of the Actor
system. For this all entries inside of the Creates type family have to be recursively aggregated. Since
the graph of Actor types inside of an Actor system may have cycles, flattening this graph requires cycle
detection inside a type computation.

4.3.3 Polymorphic Actors

Currently the APl is not designed with polymorphic Actor types in mind. The RootActor is an exaple
of a polymorphic Actor. It is parametrized by the Actors it should create on startup. In this case the

Philipp Dargel 32

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

CreatestypeistriviallydefinedasCreates (RootActor 1)= 1.Itwould beinterestingto explore
more complex polymorphic Actor types.

4.3.4 Support more Akka features

Although the APl isinspired by Akka, it only provides a very small subset of its operation. For real world
use cases this has to be expanded. It would be useful for example to provide an Actor with an initial
state on creation. This features was explored briefly in the cloud-fix/Main.hs proof of concept.

Another big feature of Akka is Actor discovery. It’s possible to search for specific Actors inside of an
Actor system. Together with the ability to name Actors and search them by name this is a powerful
feature. It would be interesting to examine whether or not this feature in particular can be added in a
typesafe fashion.

4.3.5 Better type error messages

When using type level computation in Haskell compiler error messages currently are not very refined
in general. Acommon error is that two type expressions to not unify to the same type or that no def-
inition for a type family exists for some given types. These errors may occur deep inside of complex
type expressions and may be dealing with types that have little connection to the types in the context
that the error was caused by. This makes debugging hard for the author of these type expressions and
basically impossible for anyone else without consulting the source code of these expressions them-
selves. When creating a framework it can not be expected of a user to consult the source code of the
framework each time a type expression from that framework causes a compiler error.

In Dakka these type expressions are used to prevent the user from using the framework wrongly. The
error messages thus should tell the user what they did wrong and ideally how to fix this.

There are techniques to aid the user here though.

4.3.6 Make Actor creation easier

Currently you have to perform many steps to create an Actor in Dakka. You have to create a data type
for your Actor and implement the Actor class for it.

The data type has to also have Show, Eq and Binary instances. Show and Eq instances can be derived.
Deriving Binary is not directly possible. To obtain a Binary instance without implementing it man-
ually you have to derive Generic and than create an empty Binary implementation. To be able to
derive Generic instance though you have to enable the DeriveGeneriic language extension. With
the DeriveAnyClass language extension you can remove the empty Binary implementation with

Philipp Dargel 33

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

an entry in the deriving clause of the data type. DerivingAnyClass can not always determine
what derving strategy should be used for a specific class or the user does not want to use a certain
deriving strategy. This comes up most often when using DerivingAnyClass in conjunction with
GeneralizedNewtypeDeriving. When creating an Actor it is very likely that the internal state of
that Actor can be modeled by an existing data type. Defining the Actor as a newtype is thus a reason-
ablethingto do. Forthese casestheDerivingStrategieslanguage extension exists, which enables
the user to specify the desired deriving strategy manually.

Implementing the Actor class consists of providing an implementation of behavior. If the Actor
wants to create other actors the Creates associated type family also has to be overridden. If the
Actor wants to do anything but the basic Actor operations the Capabilities associated type family
has to be overridden.

All of these potential steps add up to a substantial amount of boilerplate code. It would be nice if
the Amount of Boilerplate could be reduced without weakening the constraints of the API. The most
promising way to achieve this is seems to be TemplateHaskell.

Bibliography

[1] Actors - akka documentation. Available from: https://doc.akka.io/docs/akka/2.5.16/actors.html,
[31/08/2018].

[2] Mailboxes - akka documentation. Available from: https://doc.akka.io/docs/akka/2.5.16/
mailboxes.html, [31/08/2018].

[3] Routing - akka documentation. Available from: https://doc.akka.io/docs/akka/2.5.16/routing.
html, [31/08/2018].

[4] Cluster specification - akka documentation. Available from: https://doc.akka.io/docs/akka/2.5.16/
common/cluster.html, [31/08/2018].

[5] Actors - akka documentation. Available from: https://doc.akka.io/docs/akka/2.5.16/typed/actors.
html, [31/08/2018].

[6] Cloud-haskell documentation. Available from: https://haskell-distributed.github.io/documentation.
html, [13/11/2018].

[7] Jeff Epstein SP-J Andrew P. Black. Towards haskell in the cloud. Available from: https://www.
microsoft.com/en-us/research/wp-content/uploads/2016/07/remote.pdf, [13/11/2018].

[8] Distributed-static. Available from: https://hackage.haskell.org/package/distributed-static-0.3.8/
docs/Control-Distributed-Static.html, [18/11/2018].

Philipp Dargel 34

https://doc.akka.io/docs/akka/2.5.16/actors.html
https://doc.akka.io/docs/akka/2.5.16/mailboxes.html
https://doc.akka.io/docs/akka/2.5.16/mailboxes.html
https://doc.akka.io/docs/akka/2.5.16/routing.html
https://doc.akka.io/docs/akka/2.5.16/routing.html
https://doc.akka.io/docs/akka/2.5.16/common/cluster.html
https://doc.akka.io/docs/akka/2.5.16/common/cluster.html
https://doc.akka.io/docs/akka/2.5.16/typed/actors.html
https://doc.akka.io/docs/akka/2.5.16/typed/actors.html
https://haskell-distributed.github.io/documentation.html
https://haskell-distributed.github.io/documentation.html
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/remote.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/remote.pdf
https://hackage.haskell.org/package/distributed-static-0.3.8/docs/Control-Distributed-Static.html
https://hackage.haskell.org/package/distributed-static-0.3.8/docs/Control-Distributed-Static.html

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

[9] Thorsten Altenkirch JM Conor McBride. Why dependent types matter. Available from: http://www.
c¢s.nott.ac.uk/~psztxa/publ/ydtm.pdf, [13/11/2018].

[10] Simon Peyton Jones GWSW. Wobbly types: Type inference for generalised algebraic data
types. Available from: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/
old-wobbly.pdf?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fpeople%
2Fsimonpj%2Fpapers%2Fgadt%2FMS-CIS-05-26.pdf, [03/12/2018].

[11] Pierce BC. 2002. Types and programming languages. Cambridge, Massachusetts 02142: The MIT
Press.

[12] Kind polymorphism. Available from: https://downloads.haskell.org/~ghc/8.6.2/docs/html/
users_guide/glasgow_exts.html#kind-polymorphism, [28/11/2018].

[13] Brent A. Yorgey JC Stephanie Weirich. Giving haskell a promotion. Available from: http://dreixel.
net/research/pdf/ghp.pdf, [13/11/2018].

[14] Richard A. Eisenberg SW. Dependently typed programming with singletons. Available from: https:
//cs.brynmawr.edu/~rae/papers/2012/singletons/paper.pdf, [13/11/2018].

[15] Richard A. Eisenberg JS. Promoting functions to type families in haskell. Available from: https:
//cs.brynmawr.edu/~rae/papers/2014/promotion/promotion.pdf, [13/11/2018].

[16] Jones MP. Functional programming with overloading and higher-order polymorphism. Available
from: https://web.cecs.pdx.edu/~mpj/pubs/springschool95.pdf, [28/11/2018].

[17] Oleg Kiselyov C-cS Simon Peyton Jones. 2010. Fun with type functions. Available from:
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=
https%3A%2F%2Fresearch.microsoft.com%2F%7Esimonpj%2Fpapers%2Fassoc-types%2Ffun-
with-type-funs%2Ftypefun.pdf, [04/12/2018].

[18] Gert-Jan Bottu TS Georgios Karachalias. Quantified class constraints. Available from: https://i.cs.
hku.hk/~bruno/papers/hs2017.pdf, [06/08/2018].

[19] Ralf Lammel SPJ. Scrap your boilerplate with class: Extensible generic functions. Available from:
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/gmap3.pdf, [03/12/2018].

[20] 10.1. Language options — Glasgow Haskell Compiler 8.4.3 User’s Guide. Available from:
https://downloads.haskell.org/~ghc/8.4.3/docs/html/users_guide/glasgow_exts.html#deriving-
typeable-instances, [31/08/2018].

[21] #14341 (Show instance for TypeReps is a bit broken) - GHC. Available from: https://ghc.haskell.
org/trac/ghc/ticket/14341, [31/08/2018].

[22] Swierstra W. 2008. Functional pearl, data types a la carte. Available from: http://www.cs.ru.nl/
~W.Swierstra/Publications/DataTypesALaCarte.pd, [03/12/2018].

Philipp Dargel 35

http://www.cs.nott.ac.uk/~psztxa/publ/ydtm.pdf
http://www.cs.nott.ac.uk/~psztxa/publ/ydtm.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/old-wobbly.pdf?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fpeople%2Fsimonpj%2Fpapers%2Fgadt%2FMS-CIS-05-26.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/old-wobbly.pdf?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fpeople%2Fsimonpj%2Fpapers%2Fgadt%2FMS-CIS-05-26.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/old-wobbly.pdf?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fpeople%2Fsimonpj%2Fpapers%2Fgadt%2FMS-CIS-05-26.pdf
https://downloads.haskell.org/~ghc/8.6.2/docs/html/users_guide/glasgow_exts.html#kind-polymorphism
https://downloads.haskell.org/~ghc/8.6.2/docs/html/users_guide/glasgow_exts.html#kind-polymorphism
http://dreixel.net/research/pdf/ghp.pdf
http://dreixel.net/research/pdf/ghp.pdf
https://cs.brynmawr.edu/~rae/papers/2012/singletons/paper.pdf
https://cs.brynmawr.edu/~rae/papers/2012/singletons/paper.pdf
https://cs.brynmawr.edu/~rae/papers/2014/promotion/promotion.pdf
https://cs.brynmawr.edu/~rae/papers/2014/promotion/promotion.pdf
https://web.cecs.pdx.edu/~mpj/pubs/springschool95.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https%3A%2F%2Fresearch.microsoft.com%2F%7Esimonpj%2Fpapers%2Fassoc-types%2Ffun-with-type-funs%2Ftypefun.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https%3A%2F%2Fresearch.microsoft.com%2F%7Esimonpj%2Fpapers%2Fassoc-types%2Ffun-with-type-funs%2Ftypefun.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/typefun.pdf?from=https%3A%2F%2Fresearch.microsoft.com%2F%7Esimonpj%2Fpapers%2Fassoc-types%2Ffun-with-type-funs%2Ftypefun.pdf
https://i.cs.hku.hk/~bruno/papers/hs2017.pdf
https://i.cs.hku.hk/~bruno/papers/hs2017.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/gmap3.pdf
https://downloads.haskell.org/~ghc/8.4.3/docs/html/users_guide/glasgow_exts.html#deriving-typeable-instances
https://downloads.haskell.org/~ghc/8.4.3/docs/html/users_guide/glasgow_exts.html#deriving-typeable-instances
https://ghc.haskell.org/trac/ghc/ticket/14341
https://ghc.haskell.org/trac/ghc/ticket/14341
http://www.cs.ru.nl/~W.Swierstra/Publications/DataTypesALaCarte.pd
http://www.cs.ru.nl/~W.Swierstra/Publications/DataTypesALaCarte.pd

Dakka: A dependently typed Actor framework for Haskell 2018-12-04

5 Appendix

All code produced including this thesis itself can be found on github at https://github.com/chisui/
dakka. This document is based on the following commit.

Commit: cc37e94c8e33c8e94e36241bcdfa90d3b51e9ddc
sha256: 0z72haiyl15djf3mpbvxmlhs9apsx9g4dq9yf02dd3sq2ijp993b8

To browse the repository at this commit visit
https://github.com/chisui/dakka/tree/cc37e94c8e33c8e94e36241bcdfa90d3b51e9ddc.

To verify the hash download the tarball, unpack it and hash its contents by running:

nix-prefetch-url --unpack \
https://github.com/chisui/dakka/archive/cc37e94c8e33c8e94e36241bcdfa90d3b51e9ddc.tar.gz \
0z72haiyl15djf3mpbvxmlhs9apsx9g4dq9yf02dd3sq2ijp993b8

Philipp Dargel 36

https://github.com/chisui/dakka
https://github.com/chisui/dakka
https://github.com/chisui/dakka/tree/cc37e94c8e33c8e94e36241bcdfa90d3b51e9ddc

	Introduction
	Motivation
	Goals
	Result

	Fundamentals
	Actor Model
	Akka
	Cloud Haskell
	Dependent Typing
	singletons

	mtl Monad classes and Monad-transformers
	Haskell Language features
	Heterogeneous collections
	Heterogeneous Maps
	Typeable

	Implementation
	Overview
	Actor
	ActorContext
	send
	create
	ActorRef
	Flexibility and Effects

	Testing
	executing in a distributed environment
	Creating Actors

	Results
	Dependent types in Haskell
	Cloud Haskell
	Future Work
	General cleanup
	Automatically flattening the Actor System type hierarchy
	Polymorphic Actors
	Support more Akka features
	Better type error messages
	Make Actor creation easier

	Bibliography
	Appendix

